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Abstract There has been an increasing interest in Explainable Artificial Intelligence
(XAI) in recent years. Complex machine learning algorithms, such as deep neural
networks, can accurately predict outcomes, but provide little insight into how the
decision was made or what factors influenced the outcome. This lack of transparency
can be a major issue in high-stakes decision-making scenarios, where understanding
the reasoning behind a decision is crucial. XAI aims to address the problem of the
”black box” in machine learning models, where the AI’s decision-making process
is not transparent, and humans cannot understand how the AI arrived at a particular
decision or prediction. Evolutionary and metaheuristic techniques offer promising
avenues for achieving explainability in AI systems, and there is a lot of ongoing re-
search in this area to further explore their potential. Our work is a concise literature
review that explores the potential adoption of these techniques to facilitate the attain-
ment of explainability in AI systems. We have highlighted some of the contributions
of evolutionary and metaheuristic techniques in different approaches to achieving
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explainability, such as counterfactual explanations, local surrogate modelling, and
the development of transparent models.

1 Explainable Artificial Intelligence (XAI)

Artificial intelligence (AI) has witnessed enormous progress and advancement in
recent years. With the advent of deep learning and other sophisticated techniques,
AI has surpassed human-level performance in many complex tasks. AI systems
have found their application in diverse fields, including financial modelling, natural
language processing, medical diagnosis, self-driving cars, and various other domains.
However, the rise of AI has also raised concerns about the need for explainability
[34].

There are ethical and societal implications associated with the use of AI. In-
corporating AI in decision-making processes can perpetuate existing biases and
discrimination [28]. Explainability can help to identify and address these biases,
help to build trust in AI systems, ensure fair and unbiased decision-making, and
enable accountability. As AI continues to advance and become more ubiquitous, the
need for explainability will only continue to grow.

XAI Techniques

XAI in ML could be broadly classified into two categories; i) Transparent Models
and ii) Post-hoc Explainability [2]. Transparent Models are those which are self
explainable and they do not require any external tools in order to explain their
predictions. Building Transparent models is ideal for explainability. However, it is
very challenging to interpret many complex models such as deep neural networks
which consist of thousands of parameters and are practically black-boxes. Another
alternative is to build post-hoc tools which do not interfere with the model training
but could be used to explain its prediction post-training. The post-hoc approaches are
further divided into two; i) Model specific and ii) Model agnostic. The model-specific
methods such as backwards propagation in neural networks necessitate awareness of
the internal design of the model to facilitate the flow of information in the reverse
direction. [29]. Model agnostic methods do not make any assumptions regarding
the internal workings of a black-box model and rely only on querying the black-box
model to make predictions whenever required.

Interpretability and Accuracy Trade-off

There is an inverse relation between model complexity and interpretability. From an
interpretability standpoint, it is desired to have models which are simple and yet per-
form well on a given task. As the task gets increasingly complex, the simple models
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Fig. 1 The trade-off between machine learning model interpretability and accuracy.

may not be flexible enough and may perform poorly. Opting for more sophisticated
models may boost the performance provided the training data is sufficiently large.
It is important to note that complex models are prone to overfitting and may not
generalise well if sufficient data is not available for training. If the task to learn is
fairly complex such that a simple model may not perform well, and the training data
is also sufficiently large such that a complex model may generalize well, then there
exists a tradeoff between accuracy and interpretability as shown in Figure 1.

The remaining sections of this chapter are organized as follows: Section 2 presents
a comprehensive overview of several common metaheuristics and evolutionary al-
gorithms. Following this, Section 3 examines the application of these techniques in
attaining explainability within AI systems.

2 Evolutionary and Metaheuristic Algorithms

Evolutionary algorithms draw inspiration from the natural selection process, where
a population of candidate solutions is evolved through selection, crossover, and
mutation operations, leading to the discovery of better solutions over time. Com-
mon examples of evolutionary algorithms include genetic algorithms, evolutionary
strategies, and genetic programming.

Metaheuristic algorithms are a family of optimization techniques which, unlike
traditional optimization methods, do not rely on mathematical models and explicit
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problem-specific information. Metaheuristics are problem-independent and do not
require a precise problem formulation. Instead, they use a set of heuristic rules and
strategies to explore the search space and gradually improve the solution quality.
These algorithms are intended to efficiently explore the search space by balancing
exploration and exploitation of the solution space. Common examples of metaheuris-
tic algorithms include simulated annealing, particle swarm optimization, differential
evolution and ant colony optimization.

Evolutionary algorithms and metaheuristics are powerful tools that can be used
out of the box to address a vast array of problems, including XAI [3]. This section
provides detailed descriptions of some of these algorithms, which are employed in
the XAI techniques discussed in the following section.

2.1 Genetic Algorithms

Genetic algorithms (GAs) [18] are a class of optimization algorithms that are in-
spired by the principles of natural selection. These algorithms work by imitating
the process of evolution. These algorithms work by iteratively improving a popula-
tion of potential solutions to a problem through operations like selection, crossover,
and mutation. GA has been extensively researched and implemented in a variety
of disciplines, such as engineering, computer science, economics, and biology, to
solve complex optimization problems that are difficult or impossible to solve with
traditional methods. Genetic algorithms are popular because of their ability to find
optimal or near-optimal solutions in large, complex search spaces and their ability
to handle non-linear and non-continuous objective functions.

Genetic Representation

To implement GA, one must first devise a way to represent the solution space.
Encoding in genetic algorithms entails representing each potential solution to a
problem as a chromosome which is a set or a vector of genes. This process is also
known as chromosome encoding. In earlier works, binary encoding was popularized.
Real value representation is another popular encoding mechanism. A more detailed
review of various types of encoding is done in [23]. Value encoding is a good choice
for encoding real-valued variables. For example, if the objective is to maximize
𝑓 (𝑥1, 𝑥2) = 𝑠𝑖𝑛(𝑥1)+𝑥2 then it may seem logical to encode the inputs as 𝑥 = [𝑥1, 𝑥2]⊤,
a real valued chromosome.
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Main Components of the GA

• Fitness Function: Each solution in the population is assigned a fitness value by
the fitness function, which assesses the quality of a solution based on how well it
solves the problem.

• Selection: The selection operation chooses a subset of solutions from the existing
population, based on their fitness values, where solutions with better fitness values
have a greater probability of being chosen.

• Crossover: The crossover operation combines the genetic material (parts of the
chromosome) of the two parent solutions to generate new offspring solutions.

• Mutation: The mutation operation incorporates small random changes to an in-
dividual solution’s chromosome. It aids in introducing new genetic material into
the population, preventing the algorithm from being stuck in local optima.

Classical GA Pseudocode

There are various versions of implementing genetic algorithms. We present the
pseudocode of the classical method [20]. It is the easiest in terms of implementation
and it also contains all the main components of GA.

1. Initialize population: 𝑃 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, where 𝑥𝑖 is a potential solution.
2. Evaluate fitness: Calculate the fitness value 𝑓 (𝑥𝑖) for each 𝑥𝑖 in 𝑃.
3. Repeat until a termination condition is met:

a. Select parents: Choose two individuals from 𝑃 with a probability proportional
to their fitness. Let 𝑝𝑎 and 𝑝𝑏 be the selected parents.

b. Crossover : Create a new individual 𝑝𝑜 by recombining the genes of 𝑝𝑎 and
𝑝𝑏.

c. Mutate: With a small probability, mutate one or more genes in 𝑝𝑜.
d. Evaluate fitness: Calculate the fitness value 𝑓 (𝑝𝑜) for 𝑝𝑜.
e. Replace: Replace one of the individuals in 𝑃 with 𝑝𝑜 based on a fitness.

4. Return the best solution(s) found during the process.

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [21] is a metaheuristic algorithm that draws
inspiration from the social behaviour of fish schools and flocks of birds. Its appeal
stems from its ease of use and effectiveness in addressing complicated optimization
problems in continuous space. In PSO, a swarm of particles travel iteratively across
a search space while employing social interaction and self-experience to navigate
towards the best solution. Each particle’s position represents a potential solution to
the problem, and its movement is governed by both its best solution as well as the
best solution discovered until now by the swarm.
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Particle Velocity and Movement

At iteration 𝑡, the particle 𝑖 moves in the search space by updating its position 𝑥𝑡
𝑖

by
adding current velocity 𝑣𝑡

𝑖
to its previous position.

𝑥𝑡𝑖 = 𝑥𝑡−1
𝑖 + 𝑣𝑡𝑖 (1)

𝑣𝑡𝑖 = 𝑤𝑣𝑡−1
𝑖 + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑡−1

𝑖 − 𝑥𝑡−1
𝑖 ) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑡−1 − 𝑥𝑡−1

𝑖 ) (2)

Where 𝑝𝑏𝑒𝑠𝑡𝑡−1
𝑖

is the personal best position (solution) achieved so far by the
particle 𝑖. It is calculated using a fitness function. And 𝑔𝑏𝑒𝑠𝑡𝑡−1 is the best position
for the entire swarm so far. 𝑐1 and 𝑐2 are the cognitive and social coefficients which
are set by the user. 𝑟1 and 𝑟2 are random values generated uniformly between 0 and
1.

There are three components to the velocity of a particle; i) Momentum, ii) Cog-
nitive, and iii) Social.

• Momentum (𝑤𝑣𝑡−1
𝑖

) : Weighted previous velocity vector. The weight is also
referred to as inertia.

• Cognitive (𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑡−1
𝑖

−𝑥𝑡−1
𝑖

)): It is a component in the direction of the current
personal best position for the particle from its previous position.

• Social (𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑡−1 − 𝑥𝑡−1
𝑖

) : It is a component in the direction of the current
global best position for the particle from its previous position.

PSO Pseudocode

1. Initialize swarm size, the maximum number of iterations, and other parameters
(𝑤, 𝑐1, 𝑐2).

2. Randomly initialize each particle’s position (𝑥0) and velocity (𝑣0).
3. Evaluate the fitness of each particle.
4. Set the personal best position (𝑝𝑏𝑒𝑠𝑡0) and personal best fitness of each particle

to its current position and fitness.
5. Determine the global best position (𝑔𝑏𝑒𝑠𝑡0) based on the personal best position

and fitness of all particles.
6. For each iteration (𝑡):

a. Update each particle’s velocity (𝑣𝑡 )and position (𝑥𝑡 ) using the Eqs. 1 and 2.
b. Evaluate the fitness of each particle.
c. For each particle, update its personal best position and its personal best fitness.

Additionally, update the global best position.

7. Return the best solution(s) found during the process.
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2.3 Differential Evolution

Differential evolution (DE) [43] is another population-based metaheuristic optimiza-
tion approach. Similar to GA, DE is also inspired by natural selection, but they differ
in the way they mimic it. In DE, an initial population of possible solutions is pro-
duced at random. Each individual in the population is represented by a vector of
real values, hence individuals are also referred to as vectors. The elements of the
vector are often called genes. DE uses the difference between the vectors of two
individuals in the population to generate a new candidate solution. It involves the
selection, crossover, and mutation of individuals to create new individuals for the
next generation. It is important to note that GA and DE have distinct characteristics
and applications. DE is a specialized algorithm that uses a specific mechanism to
create new individuals, while GA is a more general approach that encompasses a
range of methods. DE is often used for continuous optimization problems with few
constraints.

In DE, a vector in the current population, also known as the target vector, might
get substituted with a trial vector. To create the trial vector corresponding to the
target vector, first, a mutant vector is created, which is a linear combination of some
randomly picked vectors from the population. The trial vector is then created by
performing a crossover operation on the mutant vector and the target vector. The
target vector and trial vector are compared and based on the fitness only one of them
is passed to the next generation.

Types of Vectors

• Target Vector (𝑥𝑖): A vector in the population, which may get replaced.
• Mutant Vector (𝑣𝑖): A vector which is generated by adding the difference between

two randomly chosen vectors in the population to a third vector. All the chosen
vectors are not the target vector.

• Trial vector (𝑢𝑖): A vector which is generated by performing a crossover operation
between the target vector and the mutant vector.

Let the population at iteration 𝑡 be 𝑃(𝑡) = {𝑥𝑡1, 𝑥
𝑡
2, 𝑥

𝑡
3...𝑥

𝑡
𝑛}. Vector 𝑥𝑡+1

𝑖
for 𝑃(𝑡+1)

is obtained by first setting 𝑥𝑡
𝑖

as the target vector. Then 𝑟1, 𝑟2 and 𝑟3 are three distinct
vectors obtained from 𝑃(𝑡) which are not the same as the target vector. They are used
to create a mutant vector 𝑣𝑡+1

𝑖
(Eq.3). 𝐹 is an user-defined constant between [0, 2].

𝑣𝑡+1
𝑖 = 𝑟1 + 𝐹 (𝑟2 − 𝑟3) (3)

Trial vector 𝑢𝑡
𝑖

is obtained by performing a crossover operation between the
mutant and the target vectors. The 𝑗 𝑡ℎ element of 𝑢𝑡+1

𝑖
is obtained by first generating

a random value 𝑟 𝑗 using uniform distribution between 0 and 1. 𝑝𝑐 is the pre-defined
crossover probability. Either the 𝑗 𝑡ℎ element of the target vector or the mutant vector
is selected according to Eq. 4.
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𝑢𝑡+1
𝑖 𝑗 =

{
𝑥𝑡
𝑖 𝑗

if 𝑟 𝑗 > 𝑝𝑐

𝑣𝑡+1
𝑖 𝑗

otherwise
(4)

Ultimately, depending on fitness, either the target vector is retained or the trial
vector replaces the target vector in 𝑃(𝑡 + 1).

DE Pseudocode

1. Initialize population 𝑃(0) with random vectors (solutions) and evaluate their
fitness

2. While the stopping criterion is not met, for each iteration (t):

a. For each individual 𝑥𝑡
𝑖

in the population, 𝑃(𝑡) do:
i. Select three distinct individuals 𝑟1, 𝑟2, and 𝑟3 from 𝑃(𝑡), not including 𝑥𝑡

𝑖

ii. Generate a mutant vector 𝑣𝑡+1
𝑖

iii. Generate a trial vector 𝑢𝑡+1
𝑖

by applying crossover between 𝑣𝑡+1
𝑖

and 𝑥𝑡
𝑖

iv. Evaluate the fitness of 𝑢𝑡+1
𝑖

v. If the fitness of 𝑢𝑡+1
𝑖

is better than 𝑥𝑡
𝑖
, then 𝑥𝑡+1

𝑖
= 𝑢𝑡+1

𝑖
else 𝑥𝑡+1

𝑖
= 𝑥𝑡

𝑖

3. Return the best solution(s) from 𝑃(𝑇), 𝑇 is the total number of iterations.

2.4 Multi-Objective Optimization using Non-dominated Sorting
Genetic Algorithm II

The practice of simultaneously optimising many objectives is known as multi-
objective optimisation. Unlike traditional optimization problems that focus on op-
timizing a single objective function, real-world situations often entail the need to
optimize multiple objectives concurrently. For instance, minimizing costs while
maximizing performance is a common example of conflicting objectives that need
to be optimized together.

Multi-objective optimization techniques aim to find a set of solutions that rep-
resent a trade-off between conflicting objectives. These solutions are called Pareto-
optimal solutions and represent the best possible compromise between the objectives.
The Pareto front is the set of all Pareto-optimal solutions. Pareto optimal solutions
are solutions which cannot be dominated by any other solution. A solution is said to
be dominating any other solution if, for all the objectives, the dominant solution is
performing better or equal to the other solution. Refer to Figure 2 for an illustration.

One way to simplify a multi-objective optimization task is to transform it into
a single-objective optimization problem by computing a weighted sum of all the
objectives. The problem is that it may not be straightforward to assign weights as
choosing weights for the different objectives is often subjective and arbitrary. It is
difficult to justify why one weight should be given more importance than another, and
different weights can lead to different optimal solutions. Moreover, multi-objective



Metaheuristic and Evolutionary Algorithms in Explainable Artificial Intelligence 9

Fig. 2 Pareto optimal front for two objective functions. The region above the green dotted line is
the feasible region. The goal is to minimize both objectives. Blue points indicate the non-dominated
solutions which are also known as Pareto-optimal solutions. The yellow point indicates an ideal
point which minimizes both objectives but lies in the infeasible region. Red points indicate sub-
optimal solutions. Note that the points in the figure are in the ”objective space” and don’t represent
their spatial arrangement. An individual is mapped to a vector consisting of the values of the
objectives 𝑥 → ( 𝑓1 (𝑥 ) , 𝑓2 (𝑥 ) ) .

optimization is often concerned with finding Pareto-optimal solutions which are as
diverse as possible. Evolutionary algorithms are well-suited for multi-objective op-
timization tasks because they are population-based and can explore multiple regions
in the solution space simultaneously.

NSGA-II (Non-dominated Sorting Genetic Algorithm II) [10] is a popular evo-
lutionary multi-objective optimization algorithm. The NSGA-II algorithm is based
on the genetic algorithm framework and employs several novel strategies to address
some of the limitations of its predecessor NSGA. NSGA-II is able to efficiently han-
dle multiple objectives simultaneously. The algorithm operates by generating and
evolving a population of candidate solutions (chromosomes), where each chromo-
some represents a potential solution to the optimization problem. NSGA-II uses a
combination of non-dominated sorting and crowding distance measurement to rank
the chromosomes based on their fitness values. The non-dominated sorting method is
used to identify the non-dominated solutions, while the crowding distance measure
is utilized to maintain diversity within the population.

Non-dominated sorting involves categorizing solutions into various levels or
fronts.s, where each level contains solutions that are dominated by the solutions
in the previous levels. The first front contains solutions that are not dominated by
any other solutions in the population, while the second front contains solutions that
are not dominated by the solutions not in the first front, and so on. The algorithm
continues to sort the solutions until all the solutions are classified into different
fronts. Crowding distance measures the degree of crowding around each solution in
the population. Solutions with higher crowding distances are preferred over those
with lower crowding distances. The solutions are first ranked based on their non-
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dominating front. A solution in the 1st front is superior to a solution in the 2nd front.
For ranking solutions within the same front, crowding distance is used.

Fig. 3 For the multiobjective
task involving minimization
of both the objectives, 𝑓1 and
𝑓2, the figures illustrate the
concept of non-dominating
fronts (a) and crowding dis-
tance (b). Crowding distance
depends on the sides of the
hyper-cuboid formed by the
nearest solutions belonging
to the same front in the ob-
jective space, 𝑐𝑑𝑖𝑠𝑡 (𝑖) =

𝑑1
𝑓𝑚𝑎𝑥
1 − 𝑓𝑚𝑖𝑛

1
+ 𝑑2

𝑓𝑚𝑎𝑥
2 − 𝑓𝑚𝑖𝑛

2
.

The Main Loop

NSGA-II is a genetic algorithm which specializes in solving a multi-objective op-
timization task. The algorithm starts by generating a random population 𝑃0 of size
𝑁 .Non-dominant sorting and crowding distance are used to rank all solutions within
the population. The fitness assigned to the solutions is equivalent to the level of
the non-dominating front to which they belong. Hence, fitness is to be minimised.
Binary tournament selection method is employed for the selection process. After
performing crossover and mutation, the offspring population 𝑄0 is generated. At
every iteration 𝑡, by incorporating an elitism mechanism 𝑆, the combined population
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𝑅𝑡 = 𝑄𝑡 ∪ 𝑃𝑡 of size 2𝑁 is reduced to size 𝑁 which is the population at iteration
𝑡 + 1, 𝑃𝑡+1 = 𝑆(𝑅𝑡 , 𝑁). Figure 4 illustrates the elitism mechanism.

Fig. 4 Elitism in NSGA - II. The combined population 𝑅𝑡 is first sorted into non-dominating fronts.
Starting from the lower fronts, if the size of a front is less than the available size, it is added to 𝑃𝑡+1.
After adding some fronts in order, if the size of the latest front to be added is less than the available
size, then the front is sorted with the help of the crowding distance. The sorted front is clipped so
that it could be fitted in the available space.

2.5 Genetic Programming

Genetic Programming (GP) [22] uses a technique inspired by natural evolution to cre-
ate computer programs by automating the program development process, reducing
the need for human intervention. It uses a population of computer programs, repre-
sented as a string of symbols, a tree or code, and evolves them over time through the
application of genetic operators such as mutation and crossover. The fitness of each
program is evaluated based on how well it performs on a set of test cases. GP has
the potential to be highly beneficial in creating models for tasks involving regression
or classification. For example, the function 𝑓 (𝑥, 𝑦) = 𝑦𝑥(2𝑥 + 𝑦) is represented as a
binary tree in Figure 5. The goal of genetic programming is to start with a random
population of trees and then through the application of genetic operators evolve the
population of trees such that their fitness is improved. The fitness of a tree measures
the accuracy of the function represented by it, for example, the mean square error
over a test dataset.

A simple GP has the following basic components.

1. A mechanism to convert the population individual to a corresponding executable
code.

2. A mechanism to measure the fitness of an individual.
3. Terminal set 𝑇 containing all the input variables and constants.
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Fig. 5 Binary tree rep-
resenting the expression:
𝑓 (𝑥, 𝑦) = 𝑦𝑥 (2𝑥 + 𝑦) .
The terminal nodes (square-
shaped) contain the model
inputs and constants. The
internal node represents func-
tions and operations.

4. Function set 𝐹 containing all the simple functions and operations applicable on
an internal node. For example, 𝐹 = {+,−, ∗, /, 𝑚𝑎𝑥}

5. Control parameters similar to genetic algorithms which include population size,
mutation rate, and crossover rate, among others.

Genetic operations

1. Selection: After the fitness of the population has been evaluated, the algorithm
selects fitter individuals as parents with probability proportional to the fitness.

2. Reproduction: Some of the fittest individuals are simply carried on to the next
generation.

3. Crossover: It involves randomly selecting nodes for a crossover between the two
parent trees. The subtrees rooted at the selected nodes (below) are exchanged
between the two parents and hence two offspring are created.

4. Mutation: It involves randomly selecting a node for mutation. A randomly gen-
erated tree replaces the subtree rooted at the selected node. See Figure 6 for an
illustration.

Operationally GP is the same as GA, it begins with a random population of trees
and applies genetic operations at each iteration to improve the population’s fitness
through incremental updates. The final population generated after meeting certain
termination criteria is used to determine the fittest program tree(s).
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Fig. 6 A binary tree rep-
resenting the expression:
𝑓 (𝑥, 𝑦) = 𝑦𝑥 (2𝑥 + 𝑦) is
mutated to a tree given just
below. It is done by first select-
ing a node in the tree (green
coloured). Then the subtree
rooted at the selected node
is replaced by a randomly
generated tree. Essentially
replacing 𝑦𝑥 in the expression
by some 𝑔 (𝑥, 𝑦) .

3 Application of Metaheuristic and Evolutionary Algorithms in
XAI

Explainability could be viewed through the lens of optimization. For example, bal-
ancing the accuracy and interpretability of AI systems is itself a multi-objective
optimization task, as there is a trade-off between these two factors. Achieving high
accuracy often requires more complex models that can be difficult to interpret, while
achieving high interpretability may require sacrificing some level of accuracy.

In addition to balancing accuracy and interpretability, post-hoc techniques such as
searching for counterfactual explanations can be viewed as a constrained optimization
task. These techniques aim to find a set of inputs that, when modified, would result
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in a different output from the AI system. This requires searching for input values that
satisfy certain constraints, such as similarity to the original input, belonging to the
data distribution and giving desired outputs from the model.

Another popular XAI technique of fitting local surrogate models involves gener-
ating samples that are close to the point that needs to be explained and belong to the
data distribution. These objectives can be formulated as optimization problems.

Evolutionary and metaheuristic algorithms are well-suited to solving optimization
problems in XAI because they are flexible in terms of problem definition. These
algorithms can be applied to a wide range of optimization tasks, including multi-
objective optimization and constrained optimization. Furthermore, they can be used
to optimize complex, non-linear functions that are difficult to solve using traditional
optimization techniques.

Overall, viewing XAI as an optimization task provides a useful framework for
developing new methods and algorithms for achieving better interpretability in AI
systems. By applying evolutionary and metaheuristic algorithms to these optimiza-
tion problems, it is possible to develop more effective and efficient techniques for
achieving explainability in AI systems. In this section, we will look at some of the
existing implementations.

3.1 Counterfactual Explanations

The first formalization of counterfactual explanations in machine learning can be
traced back to the work of [49]. In this paper, the authors proposed using counter-
factual explanations as a way to comply with the transparency and accountability
requirements of the European Union’s General Data Protection Regulation (GDPR).

A counterfactual explanation provides an explanation by showing how changing
a particular set of input features would have resulted in a different prediction by
a complex machine learning model. Counterfactual explanations are beneficial in
situations where the model’s output needs to be changed or improved. By generating
a counterfactual explanation, users can see how performing minimal changes to
specific input features can lead to a more desirable outcome. For example, after
getting a loan application rejected by a bank, one might wonder what went wrong,
more specifically why the application fell short. In this regard, the bank could return
a counterfactual, which could be in the form of ”if the personal income had been
more by x amount and the current debt was lower by y amount the loan may have
been approved”. By doing so, it not only properly justifies its decision-making but
also provides an actionable recourse. It is to be noted that for some features, the
change suggested may not be actionable. For example, someone cant age in the
reverse direction nor can change their race. One way to deal with it is to limit the
search space of the counterfactual to what changes of feature values are realistically
possible. Nevertheless, such explanations may help uncover hidden biases in the
system.
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Evolutionary and metaheuristic algorithms are advantageous for finding coun-
terfactuals because they are highly effective at navigating and searching through
large solution spaces, this helps in producing accurate and diversified counterfactual
explanations. Additionally, they can be used to optimize multiple objectives simulta-
neously [8]. However, It should be noted that an algorithm’s effectiveness in finding
optimal counterfactuals depends heavily on the reliability of the objective function.
If the objective function is not well-defined or does not reflect the desired outcome
precisely, the algorithm may converge on suboptimal solutions. For a classification
model, the objective function could be as simple as Eq. 5.

min
𝑐

𝑑 (𝑥, 𝑐)

s.t. 𝑓 (𝑥) ≠ 𝑓 (𝑐)
(5)

Where 𝑥 is the original instance, 𝑑 (𝑥, 𝑐) is the distance between the counterfactual
𝑐 and 𝑥, and 𝑓 is the black-box model.

These methods are also model agnostic, which means they can work on a wide
range of model types without the requirement of model parameters as inputs. This
is particularly useful when a company is reluctant to share the model’s internal
processes due to privacy concerns but still needs to comply with regulations.

Fig. 7 Any population-based
algorithm begins with an
initial population of sub-
optimal solutions (left). The
population is improved over
several generations and finally,
the solutions which have
high fitness are returned as
counterfactuals (right).

Before discussing the implementation details of different counterfactual genera-
tion algorithms, it is important to understand the concept of distance, which plays a
crucial role in counterfactual generation.

3.1.1 Data Types and Distance Measures

A key feature of a counterfactual is that it should be as close to the input instance as
possible. A proper distance measure is crucial for generating counterfactuals because
it determines how close the generated counterfactuals are to the original instance.
The distance measure is used to define the closeness between the original instance
and a counterfactual instance in the feature space. Defining a good distance measure
may not be straightforward as real-world data comes in different forms.
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Tabular Data

First, let’s examine the scenario where all the characteristics are numeric. In this case,
each data point is situated in an 𝑅𝑛 space, where 𝑛 is the total number of features. As
distance measures, two extremely popular options are the 𝐿1 (mean absolute error
or MAE) distance and 𝐿2 (mean squared error or MSE) distance.

𝑀𝐴𝐸 (𝑥, 𝑦) =
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 | (6)

𝑀𝑆𝐸 (𝑥, 𝑦) =
𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 (7)

Using these distances may not be appropriate as the features may not be of equal
scale, and this may lead to some features dominating others. The right approach is
to take a weighted distance.

One possible definition for the distance function 𝑑 could be the weighted 𝐿1
distance, weighted by the inverse of the Median Absolute Deviation (MAD) [49] of
each feature taken over some data points 𝑃, typically the training dataset.

𝑑 (𝑥, 𝑦) =
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |
𝑤𝑖

(8)

Where
𝑤𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑗∈𝑃 (𝑥 𝑗 ,𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑙∈𝑃 (𝑥𝑙,𝑖)) (9)

In many real-world scenarios, data is not purely numeric, but rather a mix of
different data types. This is particularly true in the banking industry, where data can
include not only numeric values such as account balances, transaction amounts, and
interest rates, but also non-numeric data such as customer names, addresses, and
account types. A proper distance measure should be defined in order to deal with
mixed data types.

One such distance measure that can accommodate both numerical and categorical
features is the Gower distance [8]. The Gower distance between 𝑥 and 𝑦 with mixed
attributes is the following.

𝑑 (𝑥, 𝑦) = 1
𝑛

𝑛∑︁
𝑖=1

𝛿(𝑥𝑖 , 𝑦𝑖) (10)

Where

𝛿(𝑥𝑖 , 𝑦𝑖) =
{

1
𝑅𝑖
|𝑥𝑖 − 𝑦𝑖 | if numerical

1𝑥𝑖≠𝑦𝑖 if categorical
(11)

𝑅𝑖 is the observed range for numerical feature 𝑖. Typically calculated on the
training dataset.
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3.1.2 Counterfactuals using Genetic Algorithms

Implementing a genetic algorithm to produce counterfactuals includes randomly
picking values for each variable to build an initial population of potential counter-
factuals. The fitness function would then evaluate each solution in the population in
terms of how similar it is to the original input, and whether it is delivering the
intended prediction from the black-box model. The algorithm would then employ
genetic operations such as selection, crossover, and mutation to generate a new pop-
ulation of potential counterfactuals. This process is repeated until a condition for
termination is reached or a predefined number of iterations is reached.

Counterfactual Explanations for Robustness, Transparency, Interpretability, and
Fairness of Artificial Intelligence (CERTIFAI) [41] uses a custom genetic algorithm
to generate counterfactuals for a given instance. The black-box model is used for a
classification task. The genetic algorithm is used to get a counterfactual belonging
to a different class than the original instance. An open-source implementation is
present at https://github.com/Ighina/CERTIFAI. The algorithm’s key components
are outlined below.

Choice of the Distance Measure

The authors have defined two distance measures, one for mixed attributes tabular
data (Eq. 12) and another for image data (Eq. 13). The 𝑁𝑜𝑟𝑚𝐴𝑏𝑠 is the weighted
𝐿1 distance defined in Eq. 8. 𝑆𝑖𝑚𝑝𝑀𝑎𝑡, a simple matching distance is selected to
measure the distance between categorical attributes.

𝑑 (𝑥, 𝑐) = 𝑁𝑜𝑟𝑚𝐴𝑏𝑠(𝑥, 𝑐) + 𝑆𝑖𝑚𝑝𝑀𝑎𝑡 (𝑥, 𝑐) (12)

𝑑 (𝑥, 𝑐) = 1
𝑆𝑆𝐼𝑀 (𝑥, 𝑐) (13)

For images, 𝑆𝑆𝐼𝑀 (Structural Similarity Index Measure) is used to define the
distance.

Custom GA

The optimization objective used is the simple one defined earlier (Eq.5). The fitness
function is defined as the reciprocal of the distance from the selected instance 𝑥. The
closer the point to 𝑥, the higher its fitness (Eq. 14).

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑐) = 1
𝑑 (𝑥, 𝑐) (14)

Since we are interested in the points which are close but also belong to a different
class after every iteration the population is filtered such that only solutions that
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satisfy the belonging to the different class constraint remain and then fitness is
calculated. The black-box model is used to determine the class of a solution. The
initial population is generated such that all the solutions belong to a class which
isn’t the same as the class of the instance 𝑥. Further constraints could be imposed on
the search space to make the counterfactual realistically attainable, for example, the
race of a person cannot be changed. This is done by passing bounds for the features
as parameters. Infeasible solutions are removed after every iteration. The mutation
operation is done by slightly perturbing a few of the feature values. And crossover is
done by simply interchanging some feature values between two solutions.

Experimental Simulations

In CERTIFAI, the authors showcase multiple use cases of counterfactual generation.
The experiments are done on the UCI adult dataset and the Pima Indian diabetes
dataset, along with some standard datasets such as iris and breast cancer. Counter-
factuals generated are used for the following.

1. Robustness: Measuring the robustness of the machine learning model against
any adversarial attack. This is done by treating counterfactuals as adversarial
examples and measuring the expected distance between input instances and their
corresponding counterfactuals.

2. Fairness: The concept of burden is defined as the expected distance between
input instances belonging to a particular group having an undesired outcome, and
their corresponding counterfactuals. It reflects the degree of change required for
instances belonging to the different partitions of the population, to change the
undesired outcome. The burden is calculated for different ethnic groups present
in the UCI adult dataset and based on the values, it can be seen that the black-box
model is biased towards whites and unfair towards the black ethnic group.

3. Explainability: For explaining instances from both the UCI adult and the Pima
Indian datasets, multiple counterfactuals are generated with or without constraints.
The counterfactuals are also used for identifying the importance assigned to the
features by the black-box model. The importance of a feature depends upon the
number of times that feature is changed in order to generate counterfactuals across
the dataset.

The study did not directly compare the new technique with existing counterfactual
generation methods that were available at the time of the study.

3.1.3 Counterfactuals using Particle Swarm Optimization and Differential
Evolution

In the work of Anderson et al. [1], DE and PSO alternatives are suggested
as a replacement for simple GA. For an optimization task (counterfactual gen-
erations) in a continuous space, a simple GA algorithm can struggle to con-
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verge [36, 17]. On the other hand, PSO and DE are often used in optimiza-
tion tasks in continuous spaces. An open-source implementation is present at
https://github.com/HaydenAndersen/ECCounterfactuals. The key components of
both algorithms are outlined below.

Choice of the Distance Measure

The algorithms are proposed to work on continuous spaces, which means all fea-
tures are numerical. That’s why the 𝐿1 norm (Eq. 6) is preferred as the choice of
the distance measure. However, in their work, the data is assumed to be scaled be-
forehand. If not, it may be preferable to use weighted distance instead (Eq. 8). The
authors generated the starting population using a 𝑈 (0, 1) uniform distribution. This
is because the data is assumed to be scaled, and all the features are lying between 0
and 1.

Fitness Function

The choice of fitness function for both algorithms is the same, it is exactly the
distance from the selected instance 𝑥. Since the distance is directly taken as the
fitness function, the lower the fitness, the better the generated candidate. If the
prediction made by the black-box model for a candidate is not a desired one, for
example, in classification, if the candidate is predicted to belong to the same class
as 𝑥. Then the fitness assigned is ∞.

Using PSO

The algorithm is mostly the same as the one discussed in section 2. The initial
population is generated randomly. Each particle is assigned fitness as ∞, as lower
fitness is better. After every iteration, the personal best position for a particle is the
one with the lowest fitness attained by it so far. The parameters take the standard
values, these are 𝑤 = 0.7298, 𝑐1 = 1.4962, and 𝑐2 = 1.4962 [5].

Using DE

Similar to PSO, the DE algorithm is almost the same as discussed in section 2. Just
as in PSO, the initial population is generated randomly and each vector is assigned
fitness as ∞. Instead of taking a fixed value of 𝐹 ∈ [0, 2], it is drawn uniformly at
every mutation from 𝑈 (𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥), the range (𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥) is user-defined. The
default parameter values are used for DE as given in the SciPy Python library.
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Experimental Simulations

The authors have performed a qualitative study as well as a comparative study. The
datasets used for the studies have all continuous attributes. The proposed algorithms
are compared with CERTIFAI. The comparison is done by measuring the mean
number of features modified while generating counterfactuals, and also the mean of
L1 and L2 distances from the original points to the counterfactuals. The datasets used
for the study have all continuous attributes. The idea is that if the compared metrics
are lower then the quality of the counterfactuals generated is higher. It is to be noted
that this won’t account for the diversity observed in the generated counterfactuals.
Qualitative analysis is done on the Penguins dataset to verify if the changes suggested
by the counterfactuals are reasonable.

3.1.4 Multi Objective Counterfactuals using NSGA-II

Dandl et al. [8] propose the search of counterfactuals as a multi-objective search.
Their work formalizes the concept of using multi-objective optimization for coun-
terfactual generation (MOC). For the instance to be explained, MOC returns a
diverse collection of counterfactuals, which corresponds to the Pareto front of a
four-objective optimization problem.

Let 𝑓 : X → 𝑅 be the black-box model mapping the feature space X to a real-
valued output and 𝑥 is the selected instance for which counterfactuals are to be
generated. 𝑌 ⊂ 𝑅 is the subset of the desired outcome. It could be a range of values
such that 𝑓 (𝑥) ∉ 𝑌 . For the classification task, 𝑓 (𝑥) could be the probability returned
by the black-box model for a particular class. A counterfactual 𝑐 has certain desired
properties.

1. 𝑓 (𝑐) should be as close as possible to the desired set 𝑌
2. 𝑐 is very close to 𝑥 in X space
3. 𝑐 differs from 𝑥 in only few features
4. 𝑐 is lying within the data distribution in X

These properties are expressed in terms of a multi-objective optimization task.

min
𝑐

𝑂 (𝑐) := min
𝑐

(𝑂1 ( 𝑓 (𝑐), 𝑌 ), 𝑂2 (𝑐, 𝑥), 𝑂3 (𝑐, 𝑥), 𝑂4 (𝑐, 𝑋𝑜𝑏𝑠)) (15)

Where

𝑂1 ( 𝑓 (𝑐), 𝑌 ) =
0 if 𝑓 (𝑐) ∈ 𝑌

inf
𝑦∈𝑌

| 𝑓 (𝑐) − 𝑦 | otherwise (16)

𝑂2 (𝑐, 𝑥) = Gower distance(𝑥, 𝑐) (17)

𝑂3 (𝑐, 𝑥) = | |𝑐 − 𝑥 | |0 (18)
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𝑂4 (𝑐, 𝑋𝑜𝑏𝑠) =
𝑘∑︁
𝑗=1

𝑤 [ 𝑗 ]Gower distance(𝑥 [ 𝑗 ] , 𝑐) (19)

The objective functions 𝑂1, 𝑂2, 𝑂3 and 𝑂4 reflect the desired properties of a
counterfactual. Gower distance (Eq. 10) measures the distance between a solution 𝑐

and 𝑥. The objective 𝑂3 counts the number of features for which 𝑥 and 𝑐 don’t have
the same values. It is done by counting the number of non-zero elements of 𝑥 − 𝑐.
The objective 𝑂4 involves a collection of observations 𝑋𝑜𝑏𝑠 , and the training data
used to train the black-box model is the preferred choice 𝑋 𝑡𝑟𝑎𝑖𝑛 = 𝑋𝑜𝑏𝑠 . It measures
the weighted distance between 𝑐 and its first k neighbours in 𝑋𝑜𝑏𝑠 .

For searching counterfactuals with multiple objectives, a slightly modified version
of NSGA - II is implemented. Since the solution could be a mixture of continuous
and discrete attributes, a mixed integer strategy [25] is used for the genetic algorithm.
The crowding distance is also modified to take into account not only the distance
in the objective space but also the distance in the solution space. An open-source
implementation is present at https://github.com/dandls/moc.

Experimental Simulations

The authors demonstrate the viability of developing a diverse range of counterfactuals
for cases in the German credit dataset. A comparative study is also done with state-
of-the-art counterfactual generation tools such as DiCE [31], Recource [48] and
Tweaking [44]. This is done on the datasets accessed from the OpenML platform.
The metric used for comparison is the coverage rate [50], which is the measure of the
relative frequency of the counterfactuals generated by a particular method dominated
by MOC. If the coverage rate is 1 then there exists at least one counterfactual
generated by MOC which dominates it.

3.1.5 Additional Works

It can be observed from Table 1 that further research has been conducted on gen-
erating counterfactuals utilizing evolutionary and metaheuristic algorithms. The
table also reflects the significance of regarding counterfactual generation as a multi-
objective optimization problem. The objectives are associated with some of the de-
sirable qualities of counterfactuals [32] such as i) correctness in outcome (validity),
ii) closeness to the original instance (proximity), iii) less number of features changed
(sparsity), iv) within feasibility constraints (actionability), v) several alternatives for
recourse (diversity) and vi) belonging to the data distribution.
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Table 1 Counterfactuals using Evolutionary and Metaheuristic algorithms

Paper Technique Used Open Source Implementation

GeCo [40] Custom Genetic Algorithm https://github.com/mjschleich/GeCo.jl
GIC [24] Genetic Algorithm with local search https://github.com/michael-

lash/Inverse Classification
Plausible Coun-
terfactuals [4]

Speed-constrained Multi-Objective
Particle Swarm Optimization

None Found

CARE [37] Multi-Objective Optimization with
NSGA - III

https://github.com/peymanrasouli/CARE

Model-Agnostic
Counterfactual
Explanations in
Credit Scoring
[9]

Custom Genetic Algorithm None Found

MOOD [30] Multi-Objective Optimization with U-
NSGA-III

https://github.com/wmonteiro-
ai/xmoai

ProCE [11] Multi Objective Optimization with
NSGA-II

https://github.com/tridungduong16/multiobj-
scm-cf

PermuteAttack
[16]

Custom Genetic Algorithm https://github.com/masoudhashemi/PermuteAttack

3.2 Local Surrogate Modelling

Local surrogate modelling involves creating an interpretable model that approximates
the behaviour of the black-box model in a specific region of input space. The resulting
surrogate model can be used to provide insights into how the black-box model
works in that region of input space. exists an inherent compromise between the
interpretability and the performance of a model. A simple interpretable model may
not perform well on the entire test dataset when compared to the more intricate
black-box model. Therefore, the objective is not to mimic the complex black-box
model entirely, instead, the idea is to use a simple interpretable model to mimic the
black-box model in a locality. This is analogous to the idea of Taylor series expansion
in mathematics which suggests that a real-valued function could be approximated to
a lower-order polynomial around a small neighbourhood. Local surrogate modelling
has gained a lot of popularity in XAI. LIME [38] is a very popular technique which
falls under this category. All these techniques have a generic framework which is the
following.

1. Select an instance of interest from the dataset for which the prediction has to be
explained.

2. Generate a neighbourhood of local data points around the instance of interest by
perturbing the features of the instance within a certain range.

3. Train a simpler, interpretable model, such as a decision tree or linear regression,
on the local data points and their corresponding black-box model predictions as
targets.
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4. Examine the surrogate model to get a more understandable view of the black-box
model’s prediction mechanism in the vicinity of the instance of interest.

Local Neighbourhood generation

The quality of explanations produced by local surrogate models is highly influenced
by the quality of the local neighbourhood. If the generated data is biased or not
representative of the population, the explanations may not accurately reflect the be-
haviour of the black-box model on the population instances. LIME uses independent
Gaussian distributions to generate a sample. It has been shown that explanations
using such a simple mechanism of generating a local sample are prone to adversarial
attacks [42].

Another challenge with local datasets is that they may not contain enough infor-
mation to capture the complexity of the black-box model accurately. This can result
in the surrogate model being overly simplistic, and the explanations generated by the
model may not provide a complete understanding of the behaviour of the black-box
model.

3.2.1 Local Rule-Based Explanations

The quality of a local explanation relies heavily on the quality of the local neighbour-
hood generated around the instance of interest. LORE [15] uses a genetic algorithm
for generating a good neighbourhood around the instance to be explained for a binary
classification task. A decision tree model is fitted and a single rule is obtained along
with some counterfactual rules extracted from the tree structure which are returned
as an explanation. The LORE algorithm investigates the black-box model’s decision
boundaries around the instance for which the prediction has to be explained. The idea
is the decision boundary is best captured by not only the region near the point of in-
terest but also the region around the nearest counterfactual and by sampling points in
these regions, the generated neighbourhood has points belonging to both classes. The
genetic algorithm is used only for the neighbourhood generation. An open-source
implementation is present at https://github.com/riccotti/LORE. The algorithm’s key
components are outlined below.

Local Neighbourhood Generation using GA

The genetic algorithm uses two custom fitness measures 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑥= and 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑥≠, for
generating the set of points belonging to the same and the different class denoted by
𝑍= and 𝑍≠ respectively. 𝑍 = 𝑍= ∪ 𝑍≠ is the generated neighbourhood on which a
decision tree model is fitted.

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑥= (𝑧) = 1 𝑓 (𝑥 )= 𝑓 (𝑧) + (1 − 𝑑𝑥 (𝑧)) − 1𝑥=𝑧 (20)
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𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑥≠ (𝑧) = 1 𝑓 (𝑥 )≠ 𝑓 (𝑧) + (1 − 𝑑𝑥 (𝑧)) − 1𝑥=𝑧 (21)

Where 𝑥 ∈ X is the instance of interest. 𝑑 : X → [0, 1] is a function which
measures the distance from 𝑥. 𝑓 (𝑧) is the black-box model prediction. Assume that
there are𝑚 features overall, and ℎ of which are categorical features. Then the distance
is a weighted sum of the distance between the categorical and the numerical features.

𝑑𝑥 (𝑧) =
ℎ

𝑚
𝑆𝑖𝑚𝑝𝑀𝑎𝑡 (𝑥, 𝑧) + 𝑚 − ℎ

𝑚
𝑁𝑜𝑟𝑚𝐸𝑢𝑐𝑙𝑖𝑑 (𝑥, 𝑧) (22)

The genetic algorithm is used twice, for generating 𝑍= and 𝑍≠. The parameters
of the algorithm are 𝑥, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠, 𝑁, 𝑝𝑐 and 𝑝𝑚. First, the population of size 𝑁 is
initialized 𝑃0 = {𝑥𝑖 |𝑥𝑖 = 𝑥;∀𝑖 = 1, 2...𝑛}. All the values are set to 𝑥. The generation
counter 𝑖 is set to 0. While 𝑖 < 𝐺, 𝑃𝑖+1 is updated from 𝑃𝑖 in the following way.

1. Perform the selection operation and select a portion of the fittest sub-population
of 𝑃𝑖 as parents.

2. Perform a 2-point crossover operation to generate offsprings using crossover prob-
ability 𝑝𝑐. Update the population as the union of the parents and the offsprings.

3. Perform mutation on a portion of the population using probability 𝑝𝑚. Update
the population as the union of the mutated and unmutated individuals.

4. Based on fitness, select the top 𝑁 individuals as the new population 𝑃𝑖+1.

Explanation using Tree

After the neighbourhood generation using GA, a decision tree model is trained
using the neighbourhood data 𝑍 and the target labels 𝑓 (𝑍) as the black-box model
predictions on it. LORE returns an explanation 𝑒 = {𝑟,Φ}. Where 𝑟 is a single rule
and Φ is a collection of counterfactual rules. The conjunction of split conditions
along a path of the local decision tree which is satisfied by 𝑥 forms 𝑟 . See Figure 8
for an illustration.

The number of split conditions that are not fulfilled by 𝑥 is tallied for each possible
counterfactual rule. For a counterfactual rule, if it is below a certain threshold, then
the rule is added to Φ.

Experimental Simulations

The authors have performed experiments are on three datasets containing both cat-
egorical and numerical attributes. These are adult, compas and german. All the
datasets represent attributes of a person. The datasets are used to perform binary
classification. After performing a train-test split, a black-box model (b) is fitted and
the quality of the mimicking the black-box model locally of LORE is assessed.

In order to fit a decision tree (c) around an instance 𝑥, a train set 𝑍 is generated.
This set 𝑍 is used to measure 5 evaluation metrics. These are i) fidelity: measured
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Fig. 8 For 𝑥 = {age: 27, income: 1200, job: other}, the purple path shows the single rule for the
explanation of the instance, r = {age ≥ 25, income ≤ 1500, job: other} → ”Grant”. All the paths
leading to the class ”Deny” are candidates for the counterfactual rules.

by comparing the predictions of b and c over 𝑍 . ii)l-fidelity: The subset of 𝑍 which
satisfy the single rule generated using LORE is used for calculating fidelity. iii)
cl-fidelity: The subset of 𝑍 which satisfies the counterfactual rules generated using
LORE is used for calculating fidelity. iv)hit: It compares 𝑏(𝑥) and 𝑐(𝑥) directly.
If 𝑏(𝑥) = 𝑐(𝑥), then 1 else 0. v) c-hit: It measures the hit of one instance which
is derived from the counterfactual rules. The average value is measured for all the
evaluation metrics over the test dataset.

A comparison study is also done by using these metrics. LIME and ANCHOR
[39] are the two state-of-the-art surrogate modelling techniques used for the study.

3.2.2 Genetic Programming Explainer

LIME operates under the assumption that for a complex black-box model, a linear
model serves as a reliable local approximation. To explain a model prediction for an
instance, a linear model is fitted on a weighted neighbourhood around the instance
and the coefficients of the model are returned as the feature importance values. In
some cases, this assumption could lead to a considerable reduction in the precision
of the local model’s ability to replicate the complex black-box model’s behaviour in
the surrounding area of the instance of interest.

Genetic Programming Explainer (GPX) [14] uses genetic programming to gener-
ate a more accurate interpretable mimicking model. GPX assumes that all the features
are numeric. A candidate model is represented as a binary tree. For more details re-
garding GP refer to section 2. The model generated is not bounded by linearity but at
the same time has a closed mathematical expression. If the function set of GP con-
tains only simple arithmetic operations and differentiable functions, then it allows
the local surrogate model to be differentiable, and the partial derivative of a feature
could be calculated to study the sensitivity of the black-box model with respect to the
feature. Let 𝑓𝑏 : 𝑅𝑛 → 𝑅 be the black-box model, and 𝑥 is the instance for which the
prediction 𝑓𝑏 (𝑥) has to be explained. GPX returns a local surrogate model 𝑓 ∗ which
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is easy to interpret and also mimics the model 𝑓𝑏 in the neighbourhood around 𝑥. An
open-source implementation is present at https://github.com/leauferreira/GpX. The
algorithm’s key components are outlined below.

Local Neighbourhood Generation

Since all the features are numerical, the local neighbourhood is generated by using
a multivariate Gaussian distribution centred at 𝑥. It assumes all the features are
independent. The covariance matrix is Σ = 𝜎𝐼𝑛, where 𝜎 is calculated over the
training data.

Objective function

The objective of GPX is to generate a function 𝑓 ∗ such that the distance between
𝑓 ∗ (𝑁 (𝑥)) and 𝑓𝑏 (𝑁 (𝑥)) is minimum.

𝑓 ∗ = arg min
𝑓

𝑑 ( 𝑓 (𝑁 (𝑥)), 𝑓𝑏 (𝑁 (𝑥))) (23)

Where 𝑑 could be 𝐿2 norm (Eq. 7). 𝑁 (𝑥) is the generated neighbourhood of
size 𝐻 around the point 𝑥. 𝑓 (𝑁 (𝑥)) = [ 𝑓 (𝑠1), 𝑓 (𝑠2)... 𝑓 (𝑠𝐻 )]⊤ such that 𝑠𝑖 ∈ 𝑁 (𝑥)
∀𝑖 ∈ {1, 2, 3..𝐻}.

Interpretability

Given a neighbourhood around an instance, GPX creates a local surrogate model
which mimics the black-box model in the neighbourhood. The surrogate model is
a simple non-linear expression of features. The complexity could be controlled by
limiting the depth of the generated tree. The interpretability comes from the fact
that the local surrogate model is a simple non-linear, differentiable mathematical
expression.

Experimental Simulations

The authors have used twenty different datasets for performing experiments. These
datasets are extracted from popular repositories such as the UCI Machine Learning
repository, OpenML, Kaggle and scikit-learn. The experiments are done in two parts,
i) A comparative study is done with LIME and Locally Generated Decision Trees to
measure the mimicking capability of the surrogate models. ii) A case study is done
to interpret a Random Forest Regressor on the Boston and Diabetes dataset using
GPX.
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For the comparative study, the accuracy (classification task) or the mean square
error (regression task) is used. For a particular instance 𝑥, a neighbourhood is
generated around 𝑥 then the local model is trained. The accuracy or the mean square
error of the local model on the generated neighbourhood is evaluated by taking
the black-box model predictions as the target values. This is performed on all the
instances in the test dataset and the average over all the test instances is returned.

3.3 Transparent Models

Transparent models are those that are easy to understand and interpret, and their
decision-making process is clear and explicit, making them useful in contexts where
understanding the model’s decision-making process is important.

3.3.1 Decision Tree

Decision trees [35] are constructed using a set of simple rules that help to partition
the data into smaller subsets. At each step of the decision tree construction, the
algorithm selects the best feature or attribute that divides the data into subsets. This
is done by evaluating various criteria such as information gain. Once the best feature
is selected, a value is chosen to split the data into two or more subsets. The process is
repeated recursively until a stopping criterion is satisfied, which could be a maximum
tree depth or a minimum number of training examples in each leaf node. The leaves
are assigned a class label or a regression value, depending on the task.

Because decision trees are constructed using a series of simple rules that are
based on the values of the input features, they are easy to interpret and explain to
humans. It is possible to visualize a decision tree and see the decisions made at each
node, which makes it clear how the model is making its predictions.

A lot of work has been done on applying evolutionary algorithms for decision
tree generation. While any optimization technique could be implemented to tune the
hyper-parameters of the tree, our interest lies in algorithms that are specifically used
in the tree-building process. The primary motivation for adopting such algorithms is
that the traditional tree-building algorithms are greedy. Once a node is created there
is no way of backtracking and changing the attribute split condition later in the tree-
building process. In contrast, evolutionary algorithms provide a global optimization
approach for tree construction that the traditional methods lack.

Simple Genetic Algorithm in Tree-Building

Evo-Tree [19] is an example where an evolutionary algorithm (genetic algorithm)
is used in the tree-building process. The trees start with a random population and
evolve using a multi-objective GA. To be accurate, it works with a single objective
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which is a weighted aggregate of two objectives. The two objectives are validation
set accuracy and tree size. It is to be noted that balancing complexity and accuracy
as competing objectives and employing multi-objective optimization to solve is a
powerful idea. And despite its potential benefits, a single objective optimization is
performed.

Components of the Evo-Tree GA

1. Fitness function: The fitness function is a combination of both objectives men-
tioned earlier, with weights assigned to each.

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼1 𝑓1 + 𝛼2 𝑓2 (24)

𝑓1 = 1 − 𝑎𝑐𝑐 (25)

𝑓2 =
Tree current depth
Tree target depth

(26)

Where 𝑓1 is the measure of inaccuracy on a validation set, and 𝑓2, is the measure
of tree complexity in terms of tree depth.

2. Genetic Representation: A Decision tree is represented as a chromosome. There
are several ways to encode the tree into a chromosome, the easiest and the most
natural way to do it is by using tree encoding. A decision tree is represented
by a binary tree, where each node has an attribute and also a threshold value.
It represents the splitting condition based on an attribute value threshold at the
corresponding node of the decision tree. It works under the assumption that all
attributes are numeric in nature, and the categorical features are to be converted
into numeric beforehand.

3. Crossover: A child is created by performing a crossover between two parent trees.
A node is randomly selected for both trees as the crossover point. The subtree
rooted at the crossover point for the first parent tree is replaced by the subtree
rooted at the crossover point of the second parent tree, creating a new child tree.

4. Mutation: A node condition mutation is implemented. First, a node is randomly
selected as the mutation point. The attribute and the threshold value present at
the node are replaced by some arbitrary attribute and value.

Additional Works

There are a lot of various implementations of evolutionary algorithms in building
decision trees. Tree-GA hybrid [26, 7] has a two-stage training scheme. First, a D-
tree is created by using a traditional algorithm, and then a population of all the paths
from the root to the distinct leaves are treated as tree rules. To be more specific,
the conjunction of the split conditions satisfied along a particular path makes a rule.
Then the population of rules is evolved using GA. Genetic programming could also



Metaheuristic and Evolutionary Algorithms in Explainable Artificial Intelligence 29

Fig. 9 Genetic operations in Evo-Tree algorithm

be used for creating decision trees [12]. In the work of Evans et al. [13], a multi-
objective genetic programming approach is suggested. The objectives are improving
accuracy and reducing tree complexity. The implementation is a hybrid between
NSGA-II and GP.

3.3.2 Learning Classifier System

A Learning Classifier System (LCS) [46] is a rule-based approach which maintains
a population of rules or classifiers. These rules are evaluated on the basis of their
fitness in solving a particular problem and the population evolves over time through
a process of selection, recombination, and mutation. It is important to note that LCS
is more of a programming paradigm rather than a specific method. It is made up of
several components which could be modified as per the task. LCS has been widely
used in both supervised as well as in reinforcement learning.

Components of a generic LCS

The components may vary based on the specification of the task. The basic compo-
nents of a generic LCS are listed below.

1. Current Knowledge: The finite population of the classifier or rules that represents
the system’s overall body of collective knowledge.

2. Performance Component: It involves the interplay between the environment and
the classifier population.
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3. Credit Assignment (Reinforcement): It distributes the reward (updates fitness) to
the classifiers after interaction with the environment.

4. Discovery: Discovers or modifies the population of classifiers using Genetic
Algorithm.

Key Elements of LCS

The elements may vary based on the task specification. To be more specific, we are
considering the Michigan-style implementation for a binary classification task [45].

• Environment: The environment is a source of experience. It is simply the training
data for the classification task. In the Michigan-style system, where the learning
is incremental, only one training instance is used for one learning cycle.

• Classifier: A classifier or a rule is an ”if condition then action” statement. In the
context of classification, it could be viewed as the condition being a conjunction of
conditions on feature values and action being the class label. Note that a classifier
itself is not a complete ML model. For a given test example, it may be possible
that a particular rule is not applicable. It is more appropriate to treat it as a local
model while the entire population of classifiers collectively forms the ML model.

• Matching set: While training or predicting a single instance is queried. The
matching set is a subset of the population of classifiers whose conditions are
satisfied (matched) by the instance.

• Covering mechanism: In the training cycle, if no classifier belongs to the matching
set, then new classifiers are introduced which match the instance by a covering
mechanism.

Rule Matching and Covering

A classifier or rule has a condition which is a conjunction of conditions on the
individual feature values. For continuous features, it could be an interval of values
and for discrete features, it could be a particular value that it could take. Wildcard
”#” is the condition on a feature which allows it to take any possible value. One
instance from the training set is chosen for a learning cycle. If the feature values of
the selected instance satisfy all the feature conditions of a rule, then the rule is said
to ”match” and is moved to the matching set. See Figure 10.

A covering mechanism is triggered if none of the population’s rules matches
the training instance. New rules are derived based on the feature values of the
training instance. For example, if all the features are discrete, some of the features
are arbitrarily selected and assigned the feature condition ”#” wildcard. For the rest
of the features, the condition allows them to only take the same value as the training
instance (Eq. 27). If the population is already at capacity, the new rules replace some
of the rules present in the population.
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Fig. 10 The matching process in LCS. The training instance is shown on the left with its attributes
taking boolean values, belonging to class 1. The classifiers in the population set are compared
one by one. If the non-wildcard attributes of the classifier and the instance are identical then the
classifier is included in the matching set.

Instance : [1, 2, 2, 0, 1] → 1; New Rule : [#, 2, #, 0, 1] → 1 (27)

A Learning Cycle

UCS [6, 33] is an LCS framework, which is used specifically in the supervised
learning setting. Following is the description of a learning cycle for UCS for the
binary classification task.

There are certain parameters that are associated with a classifier. These parameters
are updated in every training cycle. In UCS, the main parameters are i. accuracy (acc),
ii. fitness (F), iii. numerosity (num) and iv. experience (exp).

𝑎𝑐𝑐 =
number of correct classifications

𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒
(28)

𝐹 = (𝑎𝑐𝑐)𝑐 (29)

Where 𝑐 is a user-defined constant. The experience is incremented whenever the
classifier participates in a Matching Set. The numerosity is the count of the number
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of replicas of the classifier in the classifier population. Fitness is used in the rule
discovery which is done by the GA. It is also used to regulate the population size of
the classifier population.

First a training instance 𝑥 is selected from the training set. LCS begins with an
empty population [P] of classifiers, in contrast to other population-based evolution-
ary algorithms. In the first cycle, the population is automatically filled by the covering
mechanism. In a usual cycle, the training instance 𝑥 is compared one by one with
the condition of the classifiers in [P] to create a matching set [M]. The set [M] is
further divided into two subsets, correct [C] and incorrect classifiers [IC]. It is done
by comparing the action of the classifiers with the class label associated with 𝑥. At
this point, if [C] is empty, then the new rules, created using the covering mechanism,
replace some of the rules in [P]. So far, the performance and the credit assignment
components of the LCS are only involved. Now new rules are generated by the dis-
covery component by using the genetic algorithm. GA selects two classifiers from the
population as parents based on fitness values. These parents create two offspring by
applying recombination and mutation operations. The current population is updated
by inserting these new classifiers, while some classifiers are removed to preserve the
population size.

Additionally, a subsumption mechanism could be applied in every cycle. It re-
moves the rules which are overly specific and redundant, in presence of a more general
rule which has similar accuracy. In this process, the numerosity of the general rule,
which covers the feature space of the redundant rule, is incremented.

Prediction and Interpretability

At the time of prediction, a matching set [M] of rules is created. Then based on
fitness and numerosity, a weighted vote of all the classifiers in [M] is used in order
to make a prediction. The list of the rules used to generate a prediction is a list of
simple ”IF:THEN” statements which are human readable. Investigating too many
rules at a time in a complex system may become incomprehensible for a human
reader. In these cases, the transparency of the model may be reduced, making it
more challenging to comprehend the decisions being made by the system. To tackle
this, several visualization techniques have also been implemented [27, 47].

Overall, whether LCS can be considered as a transparent model depends on the
specific implementation, and the complexity of the rules learned. But LCS can be
considered to be more interpretable than some other machine learning approaches.
Additionally, because LCS uses an evolutionary process to learn the rules, it is
possible to trace the evolution of the rules over time and understand how they
have changed and adapted to different situations. This can provide insights into the
decision-making process and make the model more transparent.
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4 Concluding Remarks

The importance of explainability in artificial intelligence (AI) systems has been
highlighted in this book chapter, and the use of evolutionary and metaheuristic
algorithms to achieve it has been discussed. Various research efforts in this area
have been outlined, including counterfactual explanations, local surrogate modeling,
and transparent models. Counterfactual explanations involve generating alternative
scenarios that could have led to a different outcome, while local surrogate modeling
aims to simplify complex black-box models. Transparent models, in contrast, are
inherently interpretable and can provide insights into how they reached a specific
decision or prediction.

Given the increasing role of AI in our lives, it is crucial that we prioritize trans-
parency and accountability in these systems. To achieve this, evolutionary and meta-
heuristic algorithms are well-suited and flexible for some of the optimization tasks
involved in explainability. These algorithms can handle high-dimensional and non-
linear search spaces effectively and can handle multiple competing objectives and
constraints. Furthermore, their ability to explore a wide range of potential solutions
makes them useful. We conclude that evolutionary and metaheuristic algorithms are
valuable tools for developing trustworthy and responsible AI systems.
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